THE DISTANCE OF A PERMUTATION FROM A SUBGROUP OF Sn

نویسنده

  • RICHARD G.E. PINCH
چکیده

We show that the problem of computing the distance of a given permutation from a subgroup H of Sn is in general NP-complete, even under the restriction that H is elementary Abelian of exponent 2. The problem is shown to be polynomial-time equivalent to a problem related to finding a maximal partition of the edges of an Eulerian directed graph into cycles and this problem is in turn equivalent to the standard NP-complete problem of Boolean satisfiability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The remoteness of the permutation code of the group $U_{6n}$

Recently, a new parameter of a code, referred to as the remoteness, has been introduced.This parameter can be viewed as a dual to the covering radius. It is exactly determined for the cyclic and dihedral groups. In this paper, we consider the group $U_{6n}$ as a subgroup of $S_{2n+3}$ and obtain its remoteness.  We show that the remoteness of the permutation code $U_{6n}$ is $2n+2$.  Moreover, ...

متن کامل

The Fischer-Clifford matrices and character table of the maximal subgroup $2^9{:}(L_3(4){:}S_3)$ of $U_6(2){:}S_3$

The full automorphism group of $U_6(2)$ is a group of the form $U_6(2){:}S_3$. The group $U_6(2){:}S_3$ has a maximal subgroup $2^9{:}(L_3(4){:}S_3)$ of order 61931520. In the present paper, we determine the Fischer-Clifford matrices (which are not known yet) and hence compute the character table of the split extension $2^9{:}(L_3(4){:}S_3)$.

متن کامل

Permutation groups, minimal degrees and quantum computing

We study permutation groups of given minimal degree without the classical primitivity assumption. We provide sharp upper bounds on the order of a permutation group H ≤ Sn of minimal degree m and on the number of its elements of any given support. These results contribute to the foundations of a non-commutative coding theory. A main application of our results concerns the Hidden Subgroup Problem...

متن کامل

A Bound on Permutation Codes

Consider the symmetric group Sn with the Hamming metric. A permutation code on n symbols is a subset C ⊆ Sn. If C has minimum distance > n − 1, then |C| 6 n2 − n. Equality can be reached if and only if a projective plane of order n exists. Call C embeddable if it is contained in a permutation code of minimum distance n−1 and cardinality n2−n. Let δ = δ(C) = n2−n−|C| be the deficiency of the per...

متن کامل

New Upper Bounds for the Size of Permutation Codes via Linear Programming

An (n, d)-permutation code of size s is a subset C of Sn with s elements such that the Hamming distance dH between any two distinct elements of C is at least equal to d. In this paper, we give new upper bounds for the maximal size μ(n, d) of an (n, d)-permutation code of degree n with 11 6 n 6 14. In order to obtain these bounds, we use the structure of association scheme of the permutation gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005